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ABSTRACT

AN EVENT DRIVEN FRAMEWORK FOR SOFTWARE MONITORING

BY

SUMANT TAMBE, B.E.

Master of Science

New Mexico State University

Las Cruces, New Mexico, 2005

Dr. Jonathan Cook, Chair

The Event Tool Framework (ETF) is a framework of modifications and

extensions to the dynamic linker that allow developers to have dynamic control

over the linking process. The modified dynamic linker is called DDL. DDL al-

lows a tool builder to intercept the binding operation, and allows the tool to take

a variety of actions. ETF, which is built on top of DDL, allows powerful con-

trol over the linking process, enables the easy construction of runtime monitoring

tools and supports the runtime evolution of dynamically linked programs. An

“Introspection Suite” is a set of software modules with a common goal of pro-

gram monitoring. Behind the vision of an “Introspection Suite” is the idea of

integrated, co-operating, active tools around the running application. This work

shows how event-based integration, in which modules interact by announcing and

responding to occurrences of events, can be successfully applied to runtime pro-

gram monitoring.
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1 INTRODUCTION

Software systems deployment has made a rapid march from almost no

run-time management facilities to more and more dynamic management capabil-

ities. Run-time frameworks have been central in this march, and now many such

frameworks include the capabilities for managing and monitoring the applications

running on them. The frameworks give the developers the low-level capabilities

from which higher level tools and applications can be built. Perhaps best known is

the Java environment, with introspection and reflection capability, customizable

class loading, and now a programmable “debugger” API that gives detailed con-

trol over the application. Yet most of these frameworks support new applications

and do not look back to what legacy applications might need. There is still much

software running on legacy platforms, and much software still being created for

these platforms. This makes support for self-management in the legacy software

arena all that much more important.

The existing platform of shared, dynamic link libraries has been long over-

looked in its potential for providing to developers such capabilities as management,

configurability, and monitoring. With the proper support, the dynamic link mech-

anisms can be exploited to support many CBSE and software architecture ideas,

and can provide a platform for monitoring and self-management capabilities.

Many other uses for introspection and manipulation exist, from debugging

and profiling to redirecting invocations to specific versions or even mapping a

single call to multiple component versions for fault tolerance and reliability [5].

Some of these uses are general, but many are often very specific to a particular

application. Because the effort in building introspection and manipulation tools

is very high, projects are often prevented from building application-specific tools

or rapidly prototyping new general-purpose tools.
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This work is a step towards building a true component framework using

shared objects. DDL (Dynamic Dynamic Linker), a customized dynamic linker

that offers programmatic access to the linking process, and enables dynamic ma-

nipulation of the existing bindings in a running software system. ETF, which is

built on top of DDL, allows manipulation of the linking process. ETF helps to

build runtime monitoring tools quickly and easily. It also supports the runtime

evolution of dynamically linked programs. Instead of having one large mono-

lithic tool to serve all the different needs1 of runtime software monitoring, a set

of integrated software modules, each dedicated for a small subset of the big task

and co-operating with each other towards a common goal can be visualized. It

is called an “Introspection Suite.” The idea of the “Introspection Suite” can be

realized by building an extensible and flexible communication mechanism to in-

tegrate loosely coupled, active tools around the running application. This work

shows how “implicit invocation,” in which software modules express their interest

in receiving certain types of data that are then routed, usually by a sever, to

the appropriate recipients, can be successfully applied to runtime program mon-

itoring. This work also describes how it can support the deployment of CBSE

and system architecture composition ideas. The shared object framework can be

a true software component deployment platform, and can offer the capability of

building self-management into legacy software systems.

1Inserting wrappers for tracing, security, assertion checks, generating function call-graph to
name a few.
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2 DYNAMIC LINKING

The fundamental action of a linker is to take multiple separately-compiled

pieces of object code and resolve the unknown shared symbols into addresses,

so that the object code can execute without any missing pieces of information.

Dynamic linking leaves the symbol resolution process to be completed at runtime.

The external symbols are still “resolved” during the static link process—however,

only a placeholder dependency reference to the dynamic link library that contains

the symbol is put into the executable object code.

Shared objects (or dynamic link libraries) delay the binding of externally

needed symbols (functions, methods, global data) to the runtime of the program.

An extra module, the dynamic linker, is loaded with the program, and accom-

plishes the dynamic linking necessary for the program to complete its execution

From here on, the terms shared library and/or shared object are used

rather than dynamic link library, because these terms are more traditional, and

capture the important notion that dynamically linked objects can be shared among

processes. The code pages—which typically make up most of a shared library—

are read-only and the code in them is compiled to be position-independent1 and

thus it can be mapped into multiple process spaces, even at different addresses.

2.1 Dynamic Linking Mechanism

In the Executable and Linking Format (ELF) [13], dynamic linking uses

two tables: the Procedure Linkage Table (PLT) and the Global Offset Table

(GOT). Calls to external functions (and often to internal functions as well) use

these tables to effect an indirect call. Figure 2.1 shows a call to the printf function

as it goes through the PLT on an already resolved entry. The actual call site in the

1With the GNU C/C++ compiler, generating position-independent code must be explicitly
selected with the -fPIC option.

3



PLT
...

PLT4:
JMP (GOT4)

...

libc.so

printf

GOT
...

GOT4:

...
&printf

printf("hello")

myprog.c

myprog.o

CALL PLT4

Figure 2.1: Function call through a dynamic link.

program “calls” an entry in the PLT. The PLT is executable code, with basically

a jump instruction for each entry. The jump is an indirect jump that uses the

corresponding entry in the GOT—an address—to jump to the correct function.

Before a symbol has been resolved, the GOT entry (in effect) has the address of

the dynamic linker’s symbol resolution routine in it. In detail, the PLT entry has

a couple of instructions below its main jump. The GOT entry initially points back

to these instructions. Their job is to push the symbol name as another parameter

and then effect the jump to the dynamic linker, which still goes through yet

another PLT entry in order to push the library name as a second parameter for

the dynamic linker. After linking is done, only the first jump instruction is used.

Thus, the PLT and GOT tables centralize the code that uses the dynam-

ically bound links and the addresses of those links. The PLT is code while the

GOT is data—a table of addresses of functions. The dynamic linker is invoked

upon the first call to a function, and its job is to find the symbol (possibly needed

to load the shared library into memory), determine its address, load that address
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into the correct GOT entry, and effect a jump to the function. The function

returns directly to the original call site (since only jumps occurred in between),

and all subsequent calls only incur a one-instruction overhead since the GOT now

contains the correct address of the function.2

For position-independent code, symbols representing global data are also

referred to through the GOT, but not through the PLT. The GOT is an address

table for all external symbols (and internal globals, as well), while the PLT is

specifically for function calls.

2.2 C++ and Dynamic Linking

C++ is briefly mentioned here. The dynamic linking mechanism (and

static linking as well) only knows about symbol names, it does not have inherent

understanding of classes as such. When C++ is compiled, the compiler does name

mangling to convert the class and method name into a single unique symbol.

Because C++ allows method overloading (same name but different parameters),

the types of the parameters are also used in the name mangling to produce a

unique name for each method, overloaded or not, in a class. In this way, C++

is “invisible” to the dynamic linker, and class methods are only related in that

their mangled names all include the same class name. A further complication

is in polymorphic behavior, especially the mechanism of virtual methods that

allow specific runtime-selected behavior based on the actual object type being

used. A class vtable—a table of function pointers similar to the GOT—is used to

implement polymorphic method calls.

2Dynamic linkers do generally support binding modes other than first-call binding. Load-
time binding allows resolution before the first call, essential for real-time systems, and suppressed
binding forces every single function call to trigger a resolution (which never updates the GOT),
which can be important in debugging situations.
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3 THE DYNAMIC DYNAMIC LINKER (DDL)

Though a full-fledged component framework using shared objects is a dis-

tant goal, this work is the first step towards realizing this goal. The modified

GNU dynamic linker is called DDL. Interestingly, DDL itself already enables vir-

tually all of the needs of a true component framework. Existing capabilities of

the dynamic linker would help understand DDL in detail.

3.1 The Dynamic Linker and The Preload Libraries

Current dynamic linkers do allow rudimentary control over the linking

process. Most allow an application to preload a library, so that symbols in the

preloaded library will take precedence over those in libraries loaded later. This

library is specified using an environmental variable, LD PRELOAD. It is typically

done for things like wrapping system calls with particular behavior (e.g., a virtual

file system) or security checks. However, the preload mechanism is static and is

cumbersome to program—the wrappers need to explicitly load and find the actual

symbols that it is wrapping.

3.2 The Modified Linker

DDL is an extension to the GNU dynamic linker, and is extensible itself.

Figure 3.1 shows the high-level system architecture that DDL implements. The

shaded portions indicate parts of the system that DDL does not modify. The

application and application libraries are not modified, at the source or binary level,

and the bulk of the system dynamic linker is unmodified. The GNU dynamic linker

is an integral part of all the Linux distributions and it has been ported to several

other platforms as well. The modifications to the GNU dynamic linker do not

depend statically on any libraries. Although, it depends on some functionality

6
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app
libraryapplication

ddl services

ddl control

dynamic linker
hooks

Figure 3.1: DDL system architecture.

provided by the pthread library. It resolves the pthread -functions dynamically.

Therefore, the modifications to the GNU dynamic linker should be portable where

the GNU dynamic linker itself and the pthread library has been ported.

At the lowest level, hooks are added into the dynamic linker to allow inter-

action with the linking process. On top of these hooks useful service abstractions

are built so that tool builders would not need to start from scratch. Further, ap-

plication level services are also implemented that provide even higher level inter-

action for some types of common services—one such service is scripting language

support.

3.3 Linker Modifications

One of the goals of this project was to have very minimal modification to

the GNU dynamic linker itself. The aim was to put as much code outside the

linker as possible. Thus, the essential modifications boil down to callback hooks

in the linker code itself.
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To activate the modifications, linker code checks an environment variable,

LD REDIRECT. If this is not defined, the modifications are ignored and the linker

operates normally.

The callback hooks are in the form of function pointers. If LD REDIRECT

is defined, the code attempts to initialize the function pointers by doing symbol

lookups—using the dynamic linker code itself. The symbols are of course not

defined in the linker or in the application and its libraries. They are defined only

if a tool library has been preloaded (using the existing LD PRELOAD capability),

and thus the hooks internal to the linker get connected to tool functionality out

in a library.

All of this happens once, at application startup. Only if the function

pointer callback hooks are initialized properly will DDL act differently than the

regular GNU linker. If they are, then at key points in the linking process, the

callbacks are invoked and the external tool has the opportunity to interact with

and manipulate the linking process. In this, the hooks built into the dynamic

linker do not provide an API to external services but rather they use an API

provided by the DDL control library. The DDL control library and the tools that

use it are thus event-driven and passive unless they spawn their own threads.

An important aspect of modifications to DDL is that it is thread-safe.

The regular dynamic linker is by default thread safe because it always updates its

global data structures equivalently, so it does not matter if threads interleave their

updates. With DDL this may not always be the case, and DDL needs some of its

own static data in any case. DDL does support both threaded applications, and

client tools that create their own threads. However, DDL does not depend on a

thread library. Since the initial tests performed on DDL indicate that overlapping

link requests from multiple threads are vanishingly rare, a simple busy waiting

technique is used in very small sections of code rather than pthread -based library

routines.

8



void redirect_init (void);

int redirect_isactive (int callback_type, int thread_id);

char* redirect_lookup (char *symbol, char *from_libname,

char **force_libname, int thread_id);

int redirect_definition (char *found_symbol, char *found_libname,

void *found_func_address, char *orig_symbol,

char *from_libname, void *link_GOT_addr,

int thread_id);

int redirect_offset(char *found_symbol, char *from_libname,

int thread_id);

void redirect_symdef(char *symbol, char *libname, void *address,

char *caller_libname, int thread_id);

Figure 3.2: DDL callback API.

3.3.1 Link Process Manipulation

The fundamental capability that DDL supports is link interception and

redirection. This allows DDL and the tools that use it to peer into the dynamic

linking process, and control it. This work mostly focuses on intercepting and ma-

nipulating run-time bindings, which are generally most of the bindings that regular

programs use, and thus the interface below is concentrated in that area. However,

currently information gathering on load-time symbols is supported.1 The callback

interfaces also supply the thread ID, in case the client code must perform some

thread-specific operations. The callback points are shown in Figure 3.2.

redirect init : This is called once to initialize anything the redirection code

needs. It is called before main(), so it should not depend on any initializa-

tions in the application.

redirect isactive : This is invoked just prior to each of the other callbacks,

with the callback type given as a parameter. It should return non-zero if

1The run-time and load-time binding mechanisms do need quite different modifications to
the core dynamic linker.
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redirection is desired. If it returns zero, the other callbacks will not be

invoked. This offers dynamic on/off control of the DDL services.

redirect lookup : This hook is called before the linker tries to resolve a function

symbol that is being invoked for the first time. As parameters this function

receives the symbol of the function to be resolved and the name of the

shared object from which this call is coming from (i.e., the main application

or some shared library). It returns either a) the new name to which it

should be redirected or b) the exact same pointer it received as a parameter,

indicating no redirection is taking place. It can also return a library name

through force libname, which will restrict DDL to find the symbol in that

library.

redirect definition : This function receives all the information about the sym-

bol and link that have been resolved. For convenience it again provides

the original symbol looked up and the name of the shared object the link

request is coming from (as in redirect lookup). It also provides the symbol

that was actually resolved (different if redirect lookup returned a different

name), the library that the resolved symbol is in, the address of the resolved

symbol, and the address of the GOT entry that is being updated. Through

this, analysis tools can keep track of every link request and every symbol

definition that is resolved.

redirect offset : This function provides the offset (in bytes) that will be added

to the address of the symbol that was used. The parameters are the symbol

that was just looked up, and the library name that the call originated from.

This allows application-level PLT-style table-based redirection. It should

return 0 if table-based redirection is not being used.

redirect symdef : This function provides the information about load-time sym-

bol definitions, many of which are not function symbols and so would not

10



Link Definition
defName
soName
funcAddressGOTAddress

callName
soName * 1

<from> <to>

binds−to

Figure 3.3: Link and definition UML.

appear in the above callbacks. The symbol name, library name in which

it occurs, and its resolved address are all provided. The last parameter is

unused for now.

Thus, with this interface, tools using DDL can inspect every link request,

choose whether to redirect it to another symbol name, and record the information

about the resolved symbol and about the link itself.

Redirection capabilities allow for table-based redirection. That is, the redi-

rection code can implement a mechanism similar to the built-in PLT-GOT table-

based dynamic linking. The redirect offset callback supports this capability. This

will be explained in the next section in more detail.

Figure 3.3 shows how the links (GOT entries bound to functions) and

definitions (Functions themselves) relate to each other and the information that

uniquely describes each of them.

A link is defined by the original symbol name it is supposed to be linked to,

the name of the shared object it is for (the main application or a shared library),

and the address of the GOT entry where its binding address is stored.

A definition is defined by its symbol name, the name of the shared object

it exists in, and the address at which it exists.

Further information that is useful to save is a reference from the link to

its current definition, and in the reverse direction a set of links that currently

reference a given definition.

11



Without using the redirection capabilities, all links will point to definitions

of the same name. There are potentially multiple links to the same definition

because each shared object that calls that function will have its own link (i.e., its

own PLT/GOT and its own unique PLT/GOT entry for calls to that function).

If the redirection capabilities are being used, then the called name associated

with the link can be different from the defined name of the definition; thus it is

important to keep track of these names separately.

3.4 Table-Based Redirection

In general, the link interception and redirection capability supports redi-

recting the calls of each unique function to some other unique function. While the

mechanism does not prevent multiple redirections to the same symbol, in practice

this does not make sense, outside of perhaps a few special cases. This is because

the called function cannot differentiate between the calls, and thus cannot know

which calls map to which original symbols. Thus, only if the arguments from all

the calls were the same and the desired behavior was the same would it make

sense to redirect multiple symbols to the same target.

There are cases in runtime monitoring and program maintenance, however,

where it would be useful to have a concentrator function that did receive calls for

multiple symbols and was able to differentiate them. For example, if one wanted

to trace all calls in a program, it would be nice to have a single wrapper do the

job rather than a unique wrapper for every function.

To support this functionality, the same basic mechanisms of the system

PLT/GOT jump tables is used. The DDL interface that supports this capability

of providing an offset to be added to the address of a symbol that is resolved.

To use this capability, it needs a jump table. A simple (and non-thread-

safe) example of this is shown in Figure 3.4.

12



unsigned int func_id;

void wrapper_plt()

{

asm(" movl $0, func_id

jmp wrapper

movl $1, func_id

jmp wrapper

...

movl $98, func_id

jmp wrapper

movl $99, func_id

jmp wrapper\n");

}

Figure 3.4: Table-based redirection sample code.

This example represents a 100-entry jump table, where each entry is a

move/jump instruction pair that sets a global variable to its index value and then

jumps to the wrapper function. Note that the program never calls the wrapper plt

function—rather, it calls directly to one of the entries, which in turn jumps to the

wrapper. Use of DDL would redirect each symbol to (wrapper plt + 3 + i ∗ 15),

where i is the entry assigned to that symbol. To do this it would do symbol

redirection to “wrapper plt,” allow the dynamic linker to find that symbol, and

then add the offset using the redirect offset DDL callback. At the same time, the

DDL extension would save the symbol string in a string table, at the same index

being used in the jump table.

The wrapper function, using the global func id, would have access to the

index of the function currently being called, and from there name of the function

can be obtained. After doing its tracing behavior (or whatever it is supposed to

do), it could use dlsym() to resolve the original function and to call it. Functions

with different argument vector lengths can still be handled by the same wrapper,

since the reverse-calling convention ensures that extra argument data is ignored.
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The wrapper only needs to know the maximum argument bytes it needs to push

on the stack.

While the jump table must be created in a platform-dependent manner,

the basic idea remains essentially the same on most platforms, and through the

symbol-plus-offset mechanism that DDL exposes to the user, effective use of a

single site for multiple redirected symbols can be accomplished.

As one example, This capability was used to fully trace the SimpleScalar

CPU simulator [1, 23].

3.5 Runtime Link Modification

Section 3.3.1 describes definitions and links maintained in an internal data

structure called LinkDef data structure. It maintains resolved symbols, their

addresses, addresses of GOT entries and the current definition of the function

a link is referring to. Maintaining this information during the runtime of the

program allows developers to support dynamic program evolution through runtime

link modification.

In order to modify a link, the address in its GOT entry needs to be changed

to the address of some other function. All the subsequent calls through that link

will be directed to the new function. Note that these calls are from all the call sites

in the shared object whose link are modified. Thus, the granularity of program

evolution is at the shared object level.

Once the link is initially resolved, however, the linker is never going to be

called for that particular link again. Therefore, some way of regaining control over

the execution of the program is required to perform runtime link modification. If

the DDL-based tool spawned its own threads, then this is immediately possible.

But even if the tool depends on the application thread, link modification is still

possible. While in the long run some OS support would be needed for generic
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framework control of an application, As proof of concept for this, the OS’s signal

mechanism is employed to accomplish this.

3.6 Signal-based Link Modification

In the signal-based implementation, the user must first provide a specifi-

cation file describing which links they want to modify. While the file does not

need to be created when the application is first started, an agreed-upon file name

and location does need to be known at startup, since there is no way to send such

information through a signal. There is a signal handler waiting for USR2 signal in

the dynamic linker as part of redirection library. This handler reads in the spec-

ification file, traverses the internal data structures of links and definitions, and

modifies the GOT entries for the specified links. When the handler is completed

and the application regains control, subsequent calls on those links will go to the

new definitions.

The lookup performed by the signal handler is fast because hashing is used

to index the data structures. It is implemented as hash tables with buckets. The

downside of the signal mechanism is that the user process itself might be wanting

to use the same signal. If the user process also installs its own signal handler for

the same signal, the signal handler in place already will likely never be called.2

Redirection library will never be called and will practically turn off entire dynamic

link modification capability.

In runtime link modification, it can be the case that a new definition for

which links should point to may not yet have been loaded by the dynamic linker.

This means that it must be able to not only search the existing definitions but also

bring in new definitions, possibly even loading new shared libraries. The standard

2DDL mechanisms themselves can be used to wrap the signal() call and protect the installed
signal handler while still giving the application its desired functionality.

15



dlopen() and dlsym() interface can be used to load new libraries. This is UNIX’s

way for user-level access to shared libraries.

Other work in dynamic program evolution has noted a desire to perform

transactional updating—making sure that a module is not being actively used be-

fore updating references to or away from it [18]. This often boils down to checking

the call stack to see if any functions in the module are active. At this moment,

there is no support for such capability. In the current mechanism, existing calls

through links being modified have already invoked the old definition, and those

will eventually complete.

While trying to revert the redirection, it is quite possible that the original

function has not been loaded and therefore there is no address of it to put it back

in the GOT entry. This problem is solved by explicitly loading the symbol using

dlsym(): a part of programming interface to dynamic linking loader. The GOT is

modified as usual when dlsym() succeeds and returns the address of the desired

symbol. The specification file is used when redirect init() is called and setup the

internal data structure for possible redirection before program begins execution.

Checking whether the wrapper function definition is really present in the library

or not could be a worthwhile task.

All the links share a single definition in normal course. The internal data

structure allows to redirect calls to the function from different shared objects

to different definitions of wrapper functions. For example, a call can be redi-

rected from putchar() invoked from some library to wrap putchar() but a call

from main may not be redirected. In the later case, it might directly invoke C

library putchar() function.
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4 ETF: AN EXTENSIBLE, EVENT-BASED TOOL FRAMEWORK

Behind the vision of an “Introspection Suite” for runtime monitoring is the

idea of integrated, co-operating tools around the running application. A serious

concern in the construction of such a system of co-operating software modules

(tools) is integration. Approaches to integration range from loose, in which mod-

ules have little or no knowledge of one another, to tight, in which modules require

much knowledge about one another. Loose integration helps reduce the impact on

a system when modules are added or changed. Event-based integration, in which

modules interact by announcing and responding to occurrences called events, is

perhaps the most prevalent loose integration approach.

Event-based programming is at the heart of countless software applications

that wait for user-generated events and respond to them. Dozens of software in-

tegration systems, such as FIELD [20], also use event-based models in which

multiple software modules react to events announced by other modules. Wasser-

man [28] defined control integration as the ability of software “tools” (modules)

to “notify one another of events... as well as the ability to activate the tools under

the program control.” Thomas and Nejmeh [26] extended Wasserman’s work and

identified two basic control integration properties: provision of invocable opera-

tions (“services”) by tools and use of those operations by other tools. A subset of

control integration typified by FIELD is also known as “implicit invocation.”

Control integration, event-based integration and implicit invocation are

not the same, rather they form a hierarchy. Control integration is too broad

a term, since it may refer to loose as well as tight integration. ETF is about

loose integration. Implicit invocation, originally called “selective broadcast” was

pioneered by FIELD [20]. Implicit invocation refers to anonymous multi-casting
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Figure 4.1: An instance of the ETF tool framework.

and is therefore more specific than general event-based integration. Therefore,

implicit invocation or selective broadcast is the right term to describe ETF.

4.1 Motivation Behind ETF

DDL is a tool that fundamentally opens up ways to control the linking

process, but it is quite low level and primitive. Thus, further supporting infras-

tructure is necessary to truly enable monitoring and management of applications.

To begin with, a typical reusable API approach looks desirable in which

potential tools might use the services provided by it. However, it became clear that

multiple tools might be needed at a single time. For example, if a management

tool is being used to allow reconfiguration, a monitoring tool that collects data

from one piece of the system should also be able to be deployed within that system.

18



To this end, ETF, an extensible, event-based tool framework was created

for allowing multiple tools access to DDL capabilities. This is shown in Figure 4.1.

Tools, each embodied in a shared object, register with the event dispatcher to be

notified of link request events. The event dispatcher is what interacts with the

base DDL support, rather than the tools themselves.

The idea of an “introspection suite” consists of a set of collaborating, man-

agement or monitoring tools. This idea, of course, is not new, being used as far

back as the FIELD environment [20], albeit at a different level. In ETF, if one

wants to plug in a tool that watches a particular class and checks invariant prop-

erties, this tool should not interfere with other tools that might be doing other

things.

ETF is an event-driven framework for developing tools which monitor

and/or intercept dynamic linking of function calls in an application. Fundamen-

tally, in ETF, an event is nothing but a dynamic link request generated by appli-

cation. ETF makes it easy for tool developers to listen to dynamic link resolution

events and redirect function calls to different symbols. ETF also consists of Redi-

rection Library, an infrastructure library which provides commonly used services

such as, redirection of symbols.

4.2 Introduction To ETF

The GNU dynamic loader generates link resolution events. There are

events corresponding to every dynamic link request generated by application bi-

nary or the externally linked shared objects it is dependent on. It includes system

C library as well as programmer defined shared libraries (.so files). The modifica-

tions to the dynamic linker are known as hooks. ETF gets access to link resolution

information through these hooks. This information consists of the symbol getting

resolved, the GOT entry of the caller library, the definition symbol and its ad-

dress. The Modified dynamic linker, (DDL (Dynamic Dynamic Linker)) is itself a
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reusable piece of software as every hook has fixed behavior and the code invoked

by hooks is external to the linker.

The Event Dispatcher which is central to ETF realizes the Hollywood Model

of interaction: “Don’t call us, we’ll call you.” The mechanisms provided by the

Event Dispatcher make it an extensible framework. These mechanisms are sup-

ported by two components of ETF: the Registrar and the Router. ETF allows

the tools as well as the Redirection Library to register themselves with the Event

Dispatcher and receive notification of the dynamic link resolution events. The

tools may optionally get notifications of these events through a predefined call-

back interface implemented by each tool. For every event of interest to the tool,

it has to register a pattern corresponding to the event with the Event Dispatcher.

The Event Dispatcher guarantees a sequence of calls to these callback functions.

The tools are the artifacts of users of ETF. The possibilities of tools are

really boundless. A developer might want build a simple program introspection

tool or else a program visualization tool to show a graphic display of the dynamic

linking process. Developers might also use the services provided by the Redirection

Library to manipulate linking and build some manipulation tool. Physically, a

tool is nothing but a dynamically linked shared object file (.so file). ETF reads

a file listing all the tools to load during initialization and allows these tools to

initialize themselves. Every tool shared object has to export a fixed, predefined

interface. The Event Dispatcher and the tools interact with each other though

this fixed interface and of course, the Event Dispatcher API.

The crux of symbol redirection lies in the Redirection Library. The Redi-

rection Library listens to link resolution notifications produced by the Event Dis-

patcher and builds an internal data structure of links and definitions for future

use. The Redirection Library offers an easy to use API to redirect a symbol to

another symbol or to a table in case of the table-based redirection. A message

passing layer on top of this API enables communication with the other loaded
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tools. This message passing layer also accepts redirection requests sent by tools

through the mechanisms provided by ETF. The Redirection Library is also treated

as a tool and therefore it also exports interface of a tool to receive notifications

from the Event Dispatcher. It is in fact a special tool called a master tool. In

the context of ETF, a master tool is the one which actually has the authority to

redirect a symbol at link resolution time and make changes in the GOT entries of

the loaded shared objects. The Event Dispatcher treats the Redirection Library

as the only master tool in ETF.

The Redirection Library maintains an internal data structure to provide

its services. This internal data structure is knows as the LinkDef data structure.

The LinkDef data structure maintains the entire history of the dynamic link re-

quests made by the running application as well as any future redirection requests.

The Redirection Library manipulates the sole instance of LinkDef data structure

through a broad API provided by the LinkDef library. The tools can also ma-

nipulate the same instance through this API although it is not recommended in

general sense.

This completes an overview of the components of ETF. The following sec-

tions describe these components and their interaction in great detail.

4.3 Components of the Event Tool Framework (ETF)

ETF consists of the hooks inserted in the Dynamic Dynamic Linker (DDL),

the Redirection Library, the Event Dispatcher and the tools. The Dynamic Dy-

namic Linker and the hooks are explained in detail in the previous chapter. A

detailed description of the remaining three components is given below. The ter-

minology used here has been borrowed from the EBI framework [3] described by

Barrett, Clarke, Tarr and Wise.
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4.3.1 The Event Dispatcher

The mechanisms supported by the Event Dispatcher to allow communi-

cation between software modules (tools) is known as “implicit invocation”(a.k.a.

selective broadcast). Garlan and Shaw describe implicit invocation [8] systems:

“The idea behind implicit invocation is that instead of invoking a procedure di-

rectly, a component can announce (or broadcast) one or more events. Other

components in the system can register an interest in an event by associating a

procedure with the event. When the event is announced the system itself in-

vokes all of the procedures that have been registered for the event. Thus an event

’implicitly’ causes the invocation of procedures in other modules.”

The Event Dispatcher supports the participant interaction through two

framework components: the Registrar and the Router. The Registrar and the

Router together accomplish the task of communication between the participants

of ETF. Each represents a basic aspect of integration. Participants are the inter-

acting tools. Registration distinguishes tools that can communicate from those

that cannot. Routing transmits data among participants.

Participants of ETF are called informer tools and listener tools. The in-

former tools detect events and generate messages corresponding to them. The

Dynamic Dynamic Linker (DDL) is analogous to an informer. The callback

hooks inserted into DDL invoke specific functions in the Event Dispatcher. The

Event Dispatcher is adapted to receive information from DDL. Thus Event Dis-

patcher itself becomes an informer. The Event Dispatcher generates one event

corresponding to every invocation of the callback hooks. It generates a REDI-

RECT LOOKUP event to correspond to an invocation of the redirect lookup

hook, a REDIRECT DEFINITION event to correspond to an invocation of the

redirect definition hook and a REDIRECT OFFSET event to correspond to an in-

vocation of the redirect offset hook. The information associated with every event
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is passed in a message. Detailed description of the message format is given in the

section 4.3.2.

4.3.2 Events, Messages and Patterns

An event is an occurrence such as a link resolution activity initiated by

an application, an invocation of a function wrapper, the change of a participant’s

state or the sending of a message. Informers detect events. A message is the

information emitted by an informer in response to an event or events. Thus, mes-

sages are the manifestations of events in the framework. Every message belongs

to some registered pattern. A pattern is a plain string and represents the format

of the corresponding messages. A pattern string is made up of predefined DDL

data types. A message must have as many data values as data types defined in

the pattern. They also need to be arranged in the exact same order. This enables

new tools to interpret messages generated by the other tools.

Patterns are of two types: input patterns and output patterns. An input

pattern represents messages that a tool will be notified of. An output pattern

represents messages that a tool will generate. Thus, a listener tool must register

at least one input pattern and an informer tool must register at least one output

pattern. Two tools are allowed to communicate with each other when an input

pattern name matches to that of the output pattern registered by the other tool.

Messages in ETF can be of three different types, request, reply and noti-

fication. A simple announcement is modeled by notifications. There is no reply

expected from the listening tools if a notification is received. Although, a tool

may send another request or notification on receipt of a notification. On the

other hand, a reply must correspond to a request. ETF does not accept a request

type of message if there is no tool registered to process the request and deliver

a valid reply. A requesting tool may or may not be interested in the reply. In

such a case, requesting tool does not have to register an input pattern to listen
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to the corresponding reply. If for some reason, there is no reply generated for

a request (it could be because of a failure in the request processing) the Event

Dispatcher sends a predefined failure reply to the requesting tool. Therefore, for

every requesting tool, the Event Dispatcher automatically registers a failure reply

pattern on behalf of the tool. The tool must export the necessary interface to

receive the reply. Readers are directed to section 4.3.4 for more information on

the tool’s interface.

Every message also has a status: success and failure. The message status

describes either a successful operation or a failure in the operation. There is no

semantics attached to a status as far as message delivery is concerned. It is just

for the sake of convenience. The Event Dispatcher uses the failure status flag if a

request fails to generate a valid reply.

Every message, no matter what type, also has a mode of delivery: syn-

chronous or asynchronous. In case of a synchronous message, the Event Dis-

patcher suspends the execution of the calling thread until the message is deliv-

ered. If the message is a synchronous request then the caller is suspended until a

valid (failure/success) reply is delivered to the requesting tool. There can also be

synchronous replies.

Per instance specification is chosen over per type specification of the above

attributes for increased flexibility when messages are sent, since the former spec-

ification can model the latter, but not the vice-versa.

Every message has a unique message id. Every request has a unique mes-

sage id as well as a unique request-reply id. A reply corresponding to a request

has the same request-reply id but a different unique message id. A message also

has a sender id associated with it. A message can carry arbitrary amount of data

with it. Order and data types of the data values associated with a message are

described in the message pattern. Every message carries a reference to the pattern

it belongs to.
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Table 4.1: Data types allowed in an ETF pattern.

Keyword C Data Type Represents

DDL LINKFNAME char pointer a function name
DDL LINKLIBNAME char pointer the caller library name
DDL DEFFNAME char pointer a function name (definition)
DDL DEFLIBNAME char pointer the library name which contains the def-

inition
DDL STRING char pointer any arbitrary string
DDL OFFSET int an integer offset
DDL ADDRESS unsigned int any arbitrary address
DDL INT int any arbitrary integer
DDL CHAR int any arbitrary character
DDL DOUBLE double * a pointer to an arbitrary double precision

floating point value
DDL NEXTDATA unsigned int a pointer to a dynamically allocated (ad-

ditional) chunk of data.

A pattern is a plain null-terminated string. Every pattern begins with a

name. Followed by the name, a pattern may contain zero or more “DLL data

types.” The data types defined by the Event Dispatcher and their respective

meaning is given in table 4.1.

The Event Dispatcher interprets the data values associated with a message

simply as a block of memory. A simple convention is followed while sending data

via messages. Except integers and characters, data part of a message holds point-

ers to respective data values. By default, maximum size of data part of a message

is equal to MAX DATAVALUES, an implementation defined constant. The size

of data values occupied is stored in the message as datacount. Therefore, data

values are available in the range data[0] to data[datacount-1]. Among the DDL

data types defined in Table 4.1, DDL NEXTDATA requires a special attention. It

is a way of linking more than one data blocks together to carry arbitrary amount

of data with a message. If a message has more than MAX DATAVALUES of

data, then the last datavalue, i.e. data[MAX DATAVALUES-1], of the first data

block is a pointer to the next block of data. This block is allocated dynamically
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Figure 4.2: An example of a pattern and the corresponding message data.

by the sender of the message. Thus, a sequence of datablocks can be formed

using DDL NEXTDATA each of size MAX DATAVALUES. Releasing memory

allocated by every such message is a responsibility of the sender of the message.

The Event Dispatcher invokes a function provided by the sender of the message

upon completion of processing of the message.

For example, imagine an introspection tool monitoring memory allocations

performed by the running application. This tool computes an average size of

dynamically allocated memory per invocation of malloc(). This tool also produces

a notification message after every 50 invocations of malloc() library function.

Every such message has a name, followed by the average size of the dynamically

allocated memory of all the previous calls to the malloc() function, followed by

the address of the largest allocation, followed by a sorted list of last 50 memory

allocations in a decreasing order. A typical message pattern for such a kind of

message would be: “MALLOC AVG DDL INT DDL ADDRESS DDL INT ....

DDL INT DDL NEXTDATA DDL INT .... DDL NEXTDATA DDL INT.” A
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typical instance of a message corresponding to the output pattern is shown in the

Figure 4.2.

MALLOC AVG represents the name of message. The listening tool must

match this name exactly in its input pattern.1 The first occurrence of DDL INT

represents the average size of dynamically allocated memory. The DDL ADDRESS

represents the address of the biggest allocation. The next occurrence of DDL INT

represents the size of largest memory allocation. DDL NEXTDATA represent the

pointers to additional block of data allocated by the sender tool.

Thus using the “DDL data types” a variety of message patterns can be

constructed to carry a variety of different types of data values.

4.3.3 The Registrar

Before a tool can send or receive any messages, its intent to do so must

be registered with the Registrar. The Registrar reads a file called toolfile and

loads all the tools listed in the file. Physically, a tool is a shared object file (.so

file). The Registrar initializes every tool by invoking a fixed interface exported

by every tool. The Registrar invokes the tool init function of every tool and

allows the tool to initialize itself. The Registrar assigns an identifier to every tool

and every tools is expected to use the same identifier while communicating with

the Registrar. The tools register patterns of messages with the Registrar during

initialization. Dynamic (during tool execution) registration is also supported. Un-

registration and re-registration are also supported. An instance of the Registrar

is passed to every tool to invoke services provided by the Registrar. An instance

of the Router can also be obtained from the instance of the Registrar by a simple

method invocation.

The Registrar maintains a so called ToolCommunications [10,11] structure

to maintain a list of active tools and their respective patterns. This data structure

1All the registered output message patterns are available to the interested listening tools
through a simple API provided by the Registrar.
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of the Registrar adheres pretty closely to the Information Structures described in

the Layered Operational Model [10,11] described by Harvey and Marlin.

4.3.4 The Router

The Router’s purpose is to receive messages from the informer tools and

deliver it to the listener tools. As tools register input/output message patterns, the

Registrar instructs the Router to compute the communication bindings between

the tools. The Router uses the ToolCommunications structure defined in the

Registrar to compute the bindings. For every informer tool, the Router computes

a list of listener tools interested in that type of messages. The binding happens

when the input and the output pattern names match. When a tool sends a

message, it gets added in a queue. The Router picks the messages in the queue

and delivers them to the listener tools.

An important aspect of the operation of the Router is that, it runs in a

separate thread called the dispatch thread. The Router supports active type of

message delivery model. In the active model, listener tools register input patterns

and defines a function to receive messages corresponding to those patterns. The

dispatch thread invokes the interface exported by the tool. This interface consists

of three functions: notification receive, request receive and reply receive. These

functions are also referred as the “receive” functions. The active model supported

by the Router is the key to the event-based operation of ETF. The Router accepts

request type of messages only if there is a tool registered to accept that type of

request. If more than one tool can process a particular request, then the Router

dispatches the request to next interested tool only if all the earlier tools fail to

process the request. If none of the tools could process the request then, the Router

delivers a REQUEST FAILURE NO REPLY type of reply to the requesting tool.

Thus ETF generates no more than one reply per request. A successful reply
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generated by any tool can be delivered to any other tool interested in that type

of reply. This may or may not include the tool which generated the request.

In many systems, the functionality of the Registrar and the Router is

incorporated into a single component: the ORB of CORBA and the broadcast

message server of FIELD are two examples. In ETF, however, the Registrar and

the Router have different semantics to justify their separation. Registration is the

act of obtaining permission to communicate whereas, routing is the act of carrying

out communication. The Router deals with messages whereas, the Registrar deals

with message patterns. Registration occurs much less frequently than sending

messages.

4.3.5 The Redirection Library

The Redirection Library is a the largest part of ETF (excluding the linker).

The Redirection Library offers different services to the tools. Table 4.2 shows the

Redirection Library API functions and the service offered by each function. These

services are integrated into ETF. Users can access these services by sending re-

quests corresponding to it. The Redirection Library can stand alone as a part of

ETF and is capable of intercepting the application link resolution process based on

the user provided redirection specification. User can provide redirection specifica-

tions in a plain text file. The Redirection library interprets this file and remembers

the redirection requests enlisted in the file. It redirects the listed symbol when it

receives the notification of the event of resolution of link of that particular symbol.

The basic functionality offered by the Redirection Library is symbol/function

redirection. For example, a call to printf() from main can be redirected to

wrap printf() defined in some library say, wrapper.so. When a library or the

main program invokes a dynamically linked function, it is searched in the depen-

dent shared libraries and resolved before the actual invocation. The Redirection
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Table 4.2: API functions exported by the Redirection Library

API function name Description

redirect symtosym Redirects a symbol to another symbol
redirect symtotable Redirects a symbol to a table
redirect ignore next Ignores the next linkup request for a certain function

name from a certain library

Library grabs this opportunity to redirect the original symbol to a different symbol

if the user wants it to.

Table-based redirection is another feature supported by the Redirection

Library. Table-based redirection allows using a jump-table type of redirection.

Basically, symbol lookup is redirected to the symbol representing the beginning of

the table, and then get offset() function is used to add an offset to the symbol’s

address. Detailed description of Table-based redirection is given in section 3.4

A message passing layer sits on top of the Redirection Library API. The

message passing layer interacts with ETF. It registers two request input pat-

terns: REDIRECT SYM2SYM and REDIRECT SYM2TABLE. Tools can com-

municate with the Redirection Library in the form of requests of above two

types. The Redirection Library sends replies, namely, REPLY SYM2SYM and

REPLY SYM2TABLE on successful processing of the redirection request. Apart

from accepting requests from the other tools, Redirection Library accepts three

types of notifications generated by the Event Dispatcher: REDIRECT LOOKUP,

REDIRECT DEFINITION and REDIRECT OFFSET. It uses these notifications

to build its internal data structure of links and definitions.

4.3.5.1 Signal-based Redirection

During the early phases of the project there was no support for active tools

and all the tools including the Redirection Library were just passive tools listening

to the link resolution events. There was no way to regain the application thread of
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control once the callback hook has returned. In order to regain the control, OS’s

signal mechanism is used. With the support for active tools now, need of signal-

based redirection has reduced, if not vanished. Though tool developers should not

depend on signal-based redirection anymore, the technique has been documented

here.

When initialized, the Redirection Library installs a signal handler to act

upon the SIGUSR2 signal. Upon arrival of the USR2 signal, it reads the specifi-

cation file pointed by the LD REDIRECT environmental variable, interprets the

LINK and/or TABLE specifications given in the file and issues corresponding API

calls to carry out the operation. Practically, it is equivalent to calling the API

functions of the Redirection Library. The USR2 signal can be sent using the kill

command. For example, “kill -USR2 pid.” It is very important to note that the

specification file must be updated each time before the signal is sent. If there

are two conflicting specifications (same symbol getting redirected to two differ-

ent symbols), effectively, the Redirection Library remembers only the one which

comes later in the specification file.

4.3.5.2 Scripting Support Using Tcl

This is an esoteric feature that allows dynamic analyses to be written at

the scripting level. Scripting allows new dynamic analysis ideas to be prototyped

in a high level scripting languages (Tcl), and enables even project-specific analyses

to be developed cost-effectively.

Tcl support is fully integrated into a version of the Redirection Library.

It supports Tcl-based wrappers – that is, wrapper functions written in Tcl. To

do this, C-code wrappers that call the Tcl functions are automatically generated

from a prototype-like definition. Moreover, Tcl scripts can invoke the services

provided by the Redirection Library. To enable this, Tcl has been extended to

provide new commands corresponding to the API provided by the Redirection
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Library and the LinkDef library. This task is largely automated by SWIG [24], a

Simplified Wrapper and Interface Generator. SWIG is an interface compiler that

connects programs written in C and C++ with scripting languages such as Perl,

Python, Ruby, and Tcl. Though, at the time of this writing complete Tcl support

has not been integrated into ETF, it can be done using a dedicated proxy tool.

A separate version of the Redirection Library has been developed which allows

dynamic analyses to be written in Tcl. It is not a part of ETF as of yet. Chapter 6

talks about the the Tcl integration into the Redirection Library in great detail.

4.3.5.3 Centralized Link/Definition/Redirection Management

Along with the link interception, The Redirection Library maintains an

internal data structure of resolved symbols (definitions), and the bindings or links

that refer to them. Maintaining this information during the runtime of the pro-

gram allows developers to support dynamic program evolution through runtime

link modification (redirection). This is done in the Redirection Library and is

made available to other tools through the message passing layer. Since this capa-

bility is generally useful, it should not be re-built in every tool.

Figure 4.3 shows how the links and definitions relate to each other and the

information that uniquely describes each of them.

The link and definition structure is implemented using two hash tables

with buckets for fast lookups. The hash tables along with the operations on them

such as add and erase, make up the LinkDef library. The LinkDef library also
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provides iterators to traverse through all the link and definition entries. A link is

identified by the caller library name and the function to be called. A definition

is identified by the function name and the library name in which it is defined.

Therefore, a link holds the address of the GOT (Global Offset Table) entry and

the definition holds the address where the function is loaded in memory.

In order to modify a link, the address that is in the jump table entry needs

to be changed to the address of some other function. All the subsequent calls

through that link will be directed to the new function. Note that jump tables

are allocated per shared object (the main program and other shared libraries),

and so these calls are from all the call sites in the shared object whose link is just

modified. Thus, the granularity of program evolution is at the shared object level.

4.4 Tools

Tools are analogous to browser plug-ins which fit into ETF when they con-

form to the required interface. Tools can be viewed as clients of ETF. Tools are

of two types, an informer tool and a listener tool. A tool can be both an informer

as well as a listener. Tools are implemented as dynamically linked shared object

files (.so files). The Registrar reads a toolfile during initialization and allows these

tools to initialize themselves. The Registrar invokes mastertool init() (for the

master tool) and tool init() (for other tools) to initialize them. Every tool shared

object has to export a fixed, predefined interface. The Event Dispatcher and tools

interact with each other though this fixed interface and of course, the Event Dis-

patcher API. Depending upon the types of input patterns registered by a tool,

it needs to define some or all of the following functions: notification receive(),

request receive() and reply receive(). These functions are also referred as the “re-

ceive” functions.
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The Redirection Library is called the master tool. Master tool is the one

which has the authority to redirect a symbol during link resolution. For more

information on the Redirection Library see the section 4.3.5.

Shared object files in which, tool modules are defined must be listed along

with their absolute path in a toolfile. The Registrar reads this file. The informa-

tion concerned with the interaction of the Event Dispatcher and tools is given in

section 4.3.1.

4.4.1 Tool Events

An informer tool detects system events which is outside the scope of ETF.

An informer tool constructs a message corresponding to the event and it is then

delivered to the Event Dispatcher for a broadcast. Before a tool can send a

message, it must register an output pattern corresponding to the message. A

set of messages correspond to a registered pattern. As mentioned earlier, the

message must conform with the message pattern and the data types exactly. In

order to receive the events corresponding to a output pattern, the listener tools

must register an input pattern having the exactly same name. Only then the tools

are allowed to communicate. The Router delivers the message to all the interested

listener tools by invoking the “receive” functions of each tool. In this way, the

broadcast of a message causes an “implicit invocation” of the “receive” functions

of the other tools. The informer tool as well as the listener tools do not know how

many tools are getting informed about the event.

This allows the constructive ability to forge new capabilities without rewrit-

ing tool capabilities. The main issues in supporting the tool events are descriptive

power and efficiency of delivery. While link requests and reconfiguration events

and the like are not occurring too often, if a tool decides to publish events for ev-

ery call to some often-used function, or for every read of some variable, efficiency

does become a concern.
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Because the tools all share the same process space, the current design is

to have a read-only event description structure whose reference is passed to the

event handler: the “receive” functions, along with a reference to the event data.

In this way the event data does not need parsed every time, only traversed to

extract the information desired by any given tool.

4.4.2 Tool Conflicts

One issue with allowing multiple tools to operate is handling conflicts in

their requests on application monitoring or management.

In monitoring, two tools might wish to wrap the same function. If the

wrappers are read-only, they can be stacked and will not interfere, other than

with more overhead. If tools install a wrapper that might modify parameters or

return values, this would possibly conflict with another tool’s needed monitoring

or management. In run-time modification, two tools might ask to modify the same

link in different ways; or one tool might request to modify a link that another tool

has already wrapped for monitoring.

At the time of this writing tool conflicts are not handled in ETF. One way

to handle these conflicts is to require tools to declare a priority for themselves,

and to require tools to declare whether a link redirection will be a read-only

wrapper that will support the original functionality. If tools are only installing

read-only wrappers, allow these to be stacked. Otherwise, higher priority tools

will supersede requests by lower priority tools. Tool conflicts might also be treated

as an error.

4.4.3 Tool Threading and External Tools

The dynamic linking foundation, and the framework on top of it, nec-

essarily sits within application threads. In regular dynamic linking, the thread

initiating the as-yet-unresolved call implicitly invokes the dynamic linking func-
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tionality, which resolves the needed symbol and then jumps to the actual function.

While extending the linking functionality, adding wrappers or intermediaries be-

tween required and provided services, more overhead is added directly into the

application threads of control.

While there is no way to completely avoid overhead within the application

threads, ETF supports the creation of in-thread tool proxies, which then interact

with separately threaded tools. In this manner, significant tool functionality can

be added without “unneeded” application slowdown. Obviously, some monitoring

and management tools will need to control the execution of the application, and

even force synchronous interaction (such as stopping an invocation until security

checks on parameters are done), but other tools, such as visualization tools, that

have external needs asynchronous to the application computation can indeed be

constructed on top of ETF.

Tool proxies can also be used to communicate with tools external to the

application process. Whether the tool is too heavyweight to combine with the

application or there are existing tools that can take a data feed from another

system, proxy tools on top of ETF can be built that respond to events by passing

them on through IPC or other communication facilities. One possible use of such

a capability is the remote monitoring and management of a system not originally

built to support such.

4.5 The Thread Model

The modifications to the dynamic linker and ETF are thread-safe. ETF

and the Redirection Library can handle multiple applications threads. Moreover,

ETF itself creates a separate thread called a dispatch thread which actively invokes

“receive” functions defined by tools to deliver messages to the listener tools. It

is guaranteed that the dispatch thread is the only thread which invokes these

functions. Tools themselves can create threads and can assign variety of task
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to them, such as a GUI. There are no restrictions imposed by thread model on

tools except an obvious restriction that tools may not wait indefinitely in the

“receive” functions such as, a call to scanf() with no input. This will stop the

entire event processing mechanism and events generated by the application such

as, link resolution events will pile up in the message queue.

The thread model becomes important in case of the synchronous mes-

sages. If a synchronous notification is sent by any thread except the dispatch

thread, ETF suspends the execution of that thread. It is only when the message

is delivered to the recipient tool that the suspended thread resumes its work. In

case of synchronous requests, the suspended thread resumes only when a valid

(success/failure) reply is delivered back to the requesting tool. That means, the

tools making requests should expect to get their reply receive() function invoked

while send message() function has still not returned.

An interesting scenario arises when a tool wants to send a synchronous

message from within the “receive” functions, i.e. in the dispatch thread. Even

in this case, the send message() function does not return as long as the mes-

sage is not delivered. But this happens without suspending the dispatch thread.

This special case is handled using recursion. send message() function invokes dis-

patch() routine recursively and returns only when all the messages in the queue

are delivered to their respective recipients. Therefore, when the dispatch routine

is invoked recursively, the other application threads should not be allowed to in-

sert new messages into the message queue. Solving this problem using recursion

gives rise to another scenario: infinite circularity.

4.5.1 Infinite Circularity

Circularity can occur in event driven systems like ETF when two or more

tools send synchronous requests in a cyclic manner to process another synchronous

request. For example, Tool T1 sends a synchronous request to tool T2 and while
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processing the request, T2 sends another synchronous request to T1. And in turn

T1 again generates the same request to tool T2. If such a chain of request has

no end then it is termed as an infinite circularity. This situation is analogous

to deadlocks(or more accurately, livelocks). A pile of unprocessed synchronous

requests goes on increasing and none of the tools can do useful work. This situation

can occur in ETF if programmers are not careful. Because ETF deals with the

nested synchronous requests using recursion, if proper care is not exercised then it

will soon consume the entire available stack and bring down the system. Therefore,

ETF does not allow circularity to go beyond a certain hard-coded limit known

as the circularity threshold (say 50). If recursive calls go beyond the circularity

threshold then ETF simply drops the latest synchronous request and reports a

failure to the requesting tool. The recursion unwinds afterwards and all the earlier

tools can resume their operations.
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5 DEPLOYING ARCHITECTURE IDEAS USING ETF

The area of software architecture codified the ideas of specifying and rea-

soning about the large-scale structure of a system. Central in this work are the

notions of components and connectors. While much of the architecture work delves

deeper than these two simple ideas, the notion of connecting up components is

core [16].

In traditional programming languages, these ideas are still foreign. Com-

ponents in programming languages, be they functions or classes or packages, are

not able to refer to their external dependencies using their own internal names-

pace. Connections are bound by global name agreement, because the undefined

symbol from one object is resolved by finding the exact same symbol in another

object. This makes controlling the global namespace very important.

Dynamic linking, being an offshoot of traditional program linking, has

taken the same view of a system that programming languages have. The ETF

tools break that barrier and open up the linking process to allow new mechanisms

for system composition.

Using the Dynamic Dynamic Linker (DDL) and ETF on top it, one can

view a shared object’s external symbol dependencies as locally named port decla-

rations. The dynamic linker’s job, then, is to bind these ports with other locally

named ports on other shared objects, using some type of connector. The ability to

bind a port at link time to a different named port is provided by DDL. ETF builds

some reusable functionality on top of this such as, rebinding the ports at runtime,

binding multiple required ports to a single provided port. ETF also makes this

functionality very easy to use.

The simplest connector is a one-to-one null connector, which would be

accomplished by simply replacing the undefined symbol being looked up with a
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int printf(char *fmt,...)extern pr_string(char *s)

DDL/ETF remaps pr_string to printf

Figure 5.1: Direct null connector by re-mapping symbols.

different one, namely the symbol from the shared object providing the service.

This is shown in Figure 5.1. Thus, the undefined symbol becomes a required port

name, and the exported symbol becomes a provided port name, and ETF enables

the mapping between them. Of course, both ports need to have the exact same

call and invocation format in order for this mapping to work.

True architecture support necessitates the capability of supporting com-

plex connectors. Such connectors can have computational capabilities, whether

to transform some data, enforce contracts, or handle incompatibilities between

endpoint interfaces. A complex connector can almost be viewed as a component

itself, but the difference is generally that the connector does not embody applica-

tion logic.

In ETF, complex connectors must be embodied in some functional code,

and have their own provided ports and required ports. To insert a complex con-

nector using dynamic linking and ETF, the symbol re-mapping is done in such a

way that the connector is placed between the required and provided ports of the

application components. This is shown in Figure 5.2.

5.1 Dynamic Reconfiguration

Although the mechanisms supporting dynamic linking have been used up

to now in a static fashion—that is, linking is done once and is stable for the rest

of the execution—it does not need to be limited to this.
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int printf(char *fmt,...)

extern pr_decimal(int v)

void pr_int10(int v)

int printf(char *fmt,int v)

action{printf("%d",v)}

DDL/ETF remaps pr_decimal to pr_int10
 leaves printf direct−mapped

Figure 5.2: Complex connector by interposing a connector component.

The basic support that shared objects give the dynamic linker is a jump

table that is filled in by the dynamic linker with addresses of resolved symbols.

This jump table serves as a centralization point for external references, and thus

it can also serve to allow for dynamic reconfiguration. Each shared object has

its own jump table, and thus is independently (re-)configurable from the other

shared objects.

In ETF, information is maintained on all link sites (entries in jump tables)

and all symbol definitions, and the current associations between the two. This

allows developers to dynamically change any link at any time during the system’s

execution. This moves the dynamic linker framework one step closer to being a

dynamic component management framework.

Using this capability, monitoring capability can be inserted and removed.

It can add a new version of a shared object and update the references and can

support other forms of dynamic systems management.
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6 REDIRECTION USING A SCRIPTING LANGUAGE: TCL

Some situations call for dynamic analyses to be written at the scripting

level. Scripting allows new dynamic analysis ideas to be prototyped in a high

level scripting languages (Tcl), and enables even project-specific analyses to be

developed cost-effectively. Scripting languages are well suited for rapid prototyp-

ing where performance is not a concern. Therefore, a scripting language support

for runtime monitoring and introspection tasks may save the developer from the

drudgery of writing analysis tools in C. Ideally, a developer would want to quickly

get away with a short script for program analysis, identify the points of improve-

ments in the system and get back to the job of system development. With this

idea in mind, scripting support has been developed for Tcl on top of the existing

Redirection Library.

An important point to be noted here is that, Tcl scripting support work

is independent of the ETF. Tcl support can be integrated into ETF by using a

dedicated proxy tool developed in C. This tool can invoke methods written in

Tcl using Tcl C Extension API. Following discussion talks about a stand-alone

version of the Redirection Library with Tcl support built on top of it.

6.1 Selection of the Scripting Language

There are several scripting languages to choose from for such an extension

and embedding task. Python [19], Ruby [21], Lua [14], Tcl [25] are a few of them.

The selection of language was based on the following four criteria.

• The thread model supported or imposed by the language: This is important

because this system should be usable in multi-threaded environment also.
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• The ease of extending the language using C and ease of embedding it in

an application written in C: Both the models are important here to enable

analysis to be done entirely in a scripting language.

• The ease of development of a GUI.

• The active user community of the language and the documentation avail-

ability.

Python, Ruby, Lua and Tcl were compared on these grounds and Tcl was

chosen among them. The reasons in favor of Tcl can be enumerated as follows:

• Beginning with the 8.1 release, the Tcl core is thread safe. It supports Tcl

into multi-threaded applications without customizing the Tcl core.

• An important constraint of the Tcl threads implementation is that only the

thread that created a Tcl interpreter can use that interpreter. In other

words, multiple threads can not access the same Tcl interpreter. This con-

straint was not prohibitive. Tcl thread constraints fit well into the thread

model as long as Tcl interpreter is used by the same thread every time.

• Tcl was built to be extended and embedded in system languages. The API

is well documented. Tcl/Tk allows rapid construction of GUIs. Moreover,

there are open source, interface generators such as SWIG [24] which connects

programs written in C and C++ with scripting languages such as Tcl in an

almost fully automatic way. For these reasons, Tcl outweighed the other

languages.

6.2 Building the Tcl Scripting Layer

The task was to incorporate two different models of interaction of an ap-

plication and Tcl: the extend model and the embed model. The extend model is
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about invoking the Redirection Library services in the form of new Tcl commands.

The embed model is about invoking Tcl methods from a C program. The Redi-

rection Library and the LinkDef library exports the services provided by them in

the form of an easy to use API. SWIG [24], a Simplified Wrapper and Interface

Generator was used to generate Tcl wrappers corresponding to every API function

exported by the Redirection Library and the LinkDef library. The advantage of

using SWIG is that new API functions, if added, can be quickly extended as Tcl

commands. Moreover, the wrappers SWIG generates are type safe and therefore

add an extra layer of security.

The other part, embedding Tcl, was little tricky due to the fact that the Tcl

threads implementation allows only the thread that created a Tcl interpreter to

use that interpreter. To overcome this limitation, a dedicated tclthread is created

which is responsible for invoking Tcl methods from within a C program. Tcl has a

nice, robust API to embed Tcl in a C program. Every time when the application

thread wants to invoke the Tcl methods corresponding to hooks in the modified

linker, the Redirection Library suspends the execution of application thread and

notifies the tclthread to invoke the corresponding method. Data is passed back

and forth between two threads in a thread safe way.

This version of the Redirection Library, called “Tcl Redirection Library”

is packaged separately and can be used for quick program analysis at the scripting

language level.
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7 RELATED WORK

The DITools project [22] is the closest related work to the DDL project.

They used a similar approach to link interception and modification, and supported

redirecting a link to a wrapper and also an event notification mechanism where

each monitored call was not wrapped but did generate an event to a fixed-interface

callback. It does not appear that they addressed the issues surrounding C++, nor

did they do non-function symbol resolution nor runtime link modification.

Ho and Olsson [12] describe dld, a tool for “genuine” dynamic linking.

Their tool provides the capability to load and unload shared libraries, breaking

links when a library is unloaded and relinking them to new code when new libraries

are loaded. However, it does not appear that they ever supported redirection of

links to different symbol names.

Hicks et. al [9] work on binary software updating from a formal perspective.

Their methods use typed, proof-carrying assembly code from which they can verify

that an update will be safe. Their infrastructure includes special languages and

compilers to generate the annotated assembly code, and a runtime framework that

uses it.

Additional systems that provide instrumentation capabilities on executable

binaries exist. Dyninst [4] can patch custom code into pre-existing executable

code, and has provided a platform for several research tools. Valgrind [27] provides

a complete simulated CPU and execution space to the program under inspection,

and is extensible, thus allowing new dynamic analyses to use it as a foundation.

There is much work in dynamic introspection and modification of Java

programs, but it is in a very different environment than this work. Some repre-

sentative references are [2, 7, 15, 18].
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In the commercial world, .NET seems to offer extended capabilities beyond

simple dynamic linking [17]. .NET “solved” the DLL incompatibility problems by

requiring shared objects to reference exact versions of other shared objects, and

even allowing multiple shared objects in an application to use different versions

of some other shared objects. External rules can allow a different version to

be declared compatible, so that application upgrading is possible, but tightly

controlled. .NET also has strong introspection capability, and a debugging API

that gives control over an application, so it is possible that they support a large

amount of what DDL/ETF does. However, no indication has been seen that .NET

would allow programmatic symbol redirection (although the debugger API does

support run-time CLR binary editing), and there are some indications that .NET

still suffers from some versioning problems [6].
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8 LIMITATIONS AND FUTURE WORK

Using shared objects and dynamic linking does have its limitations in terms

of fully deploying component-based system ideas.

For one, dynamic linking occurs within a single process. As such, shared

objects are not truly protected from each other, and many well-known accidental

or malicious anomalies can occur. Shared objects have implicit access to each

other’s address space, and although the linker can arbitrate between symbol-based

access requests, it cannot prevent or monitor implicit or accidental access.

The invocations between shared objects, since they are essentially just

function calls, are synchronous. While ETF framework can build on top of this

to implement asynchronous interaction, this would have to be designed into the

shared objects that used it. Legacy shared objects, expecting synchronous inter-

action, would probably not support such large interaction changes.

Dynamic linking, like static linking, is done without regards to type sig-

natures. It is assumed that the compiler has checked this already, and so when

resolving symbols, only the symbol name matters. By opening up the dynamic

linking process and allowing diverse binding possibilities, interface checking (at

least type checking but also perhaps semantic checking) becomes important.

Currently this issue has not been tackled. However, there are several pos-

sibilities. Most executable formats are extensible; debuggers take advantage of

this to include much information about a program, including type information.

A similar approach can be taken to include only the type information about the

external interface of the shared object. An alternative would be to require a sepa-

rate specification of the interface type signatures, similar to a header file. Methods

such as how C++ embeds type information into symbol names could also be used,

although this would need to be augmented with type relations.
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Granularity at which DDL/ETF performs could be a limitation for certain

types of monitoring needs. DDL/ETF functions at function call granularity. Some

program monitors need finer grain access, e.g. to monitor loops or conditionals.

At the time of this writing, ETF supports exactly one dispatch thread

and a message queue. In a multi-threaded application, single dispatch thread

might get overwhelmed by a flood of asynchronous messages generated by several

application threads. If the message queue length is not controlled then it is possible

that dispatch thread might never get enough CPU share to cope up with the ever

increasing length of the message queue. One way to handle this situation is to

continually watch the size of the message queue and suspend the execution of the

application threads till the message queue size becomes manageable.

Finally, not all shared object interactions need to be mediated by the

dynamic linker. Implicit interactions might occur. Addresses, including functions

pointers, can be passed between shared objects and then used to directly access

some “unknown” exported behavior or data. Some limitations on what a shared

object could do to be considered a manageable component would be required, and

most of these could probably be checked with some static analysis techniques.
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9 CONCLUSION

This work has describe an extensible event-based mechanism for manipula-

tion and monitoring of an application built on shared libraries through interacting

with the dynamic linker.

Shared, dynamically linked libraries have been around for quite some time,

and yet they have been ignored as a platform for CBSE (Component Based Soft-

ware Engineering) ideas. This ubiquitous platform can support much more dy-

namic behavior and component management than it currently does. The ultimate

hope is to influence the direction of future dynamic library infrastructure to in-

clude the support needed to make shared libraries true manageable components.

As with any opening of an application framework, security does become a

concern. However, since some dynamic library platforms already allow redirection

through the preload mechanism, this work can be seen as enabling further security

measures rather than opening new holes. An authentication mechanism can be

implemented to ensure that shared objects are from a trusted source. In this

way management and manipulation can be allowed and at the same time have

confidence that the manipulation is not being done by a malicious tool.

The current focus is in the deployment of the Hercules framework on

top of DDL/ETF, but DDL/ETF is also being used for dynamic analysis work

(especially scripting language support), for dynamic behavior adaptation, and

other applications. Hercules is a framework for reliable evolution of a system

where multiple versions of components can be active in a system at any given

time [5]. An early prototype of this is already working, where components are

C++ classes.

Presently, DDL and ETF are stable and both are freely available for re-

search use at http://www.cs.nmsu.edu/please/ddl/index.php.
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