
Model-driven Generative Framework for 
Automated OMG DDS Performance Testing in the Cloud

Motivation

• The Object Management Group’s (OMG) 
Data Distribution Service (DDS) provides 
many configurable policies which determine 
end-to-end quality of service (QoS) of 
applications

Motivation

• The Object Management Group’s (OMG) 
Data Distribution Service (DDS) provides 
many configurable policies which determine 
end-to-end quality of service (QoS) of 
applications

Motivation

• The Object Management Group’s (OMG) 
Data Distribution Service (DDS) provides 
many configurable policies which determine 
end-to-end quality of service (QoS) of 
applications

Motivation

• The Object Management Group’s (OMG) 
Data Distribution Service (DDS) provides 
many configurable policies which determine 
end-to-end quality of service (QoS) of 
applications

Motivation

• The Object Management Group’s (OMG) 
Data Distribution Service (DDS) provides 
many configurable policies which determine 
end-to-end quality of service (QoS) of 
applications

Motivation

• The Object Management Group’s (OMG) 
Data Distribution Service (DDS) provides 
many configurable policies which determine 
end-to-end quality of service (QoS) of 
applications

Motivation

• The Object Management Group’s (OMG) 
Data Distribution Service (DDS) provides 
many configurable policies which determine 
end-to-end quality of service (QoS) of 
applications

Motivation

• The Object Management Group’s (OMG) 
Data Distribution Service (DDS) provides 
many configurable policies which determine 
end-to-end quality of service (QoS) of 
applications

Motivation

• The Object Management Group’s (OMG) 
Data Distribution Service (DDS) provides 
many configurable policies which determine 
end-to-end quality of service (QoS) of 
applications

Motivation

• The Object Management Group’s (OMG) 
Data Distribution Service (DDS) provides 
many configurable policies which determine 
end-to-end quality of service (QoS) of 
applications

Motivation

• The Object Management Group’s (OMG) 
Data Distribution Service (DDS) provides 
many configurable policies which determine 
end-to-end quality of service (QoS) of 
applications

Motivation

• The Object Management Group’s (OMG) 
Data Distribution Service (DDS) provides 
many configurable policies which determine 
end-to-end quality of service (QoS) of 
applications

Motivation

• The Object Management Group’s (OMG) 
Data Distribution Service (DDS) provides 
many configurable policies which determine 
end-to-end quality of service (QoS) of 
applications

Motivation

• The Object Management Group’s (OMG) 
Data Distribution Service (DDS) provides 
many configurable policies which determine 
end-to-end quality of service (QoS) of 
applications

Motivation

• The Object Management Group’s (OMG) 
Data Distribution Service (DDS) provides 
many configurable policies which determine 
end-to-end quality of service (QoS) of 
applications

Motivation

• The Object Management Group’s (OMG) 
Data Distribution Service (DDS) provides 
many configurable policies which determine 
end-to-end quality of service (QoS) of 
applications

DDS QoS

Reference from http://www.omg.org/news/meetings/workshops/RT-2007/00-T5_Hunt-revised.pdf 

Motivation

• The Object Management Group’s (OMG) 
Data Distribution Service (DDS) provides 
many configurable policies which determine 
end-to-end quality of service (QoS) of 
applications

Challenge

• It is challenging

• To predict the system’s performance in 
terms of latencies, throughput, and resource 
usage 

• Because ... 

• Diverse combinations of QoS configurations 
influence QoS of applications

Solution

• To overcome this problem

• Design-time formal methods 

• But ... lack of sufficient accuracy in 
prediction, tool support, and understanding 
of formalism 

• A promising approach 

• To emulate system behavior and gather data 
on the QoS parameters of interest by 
experimentation

• To realize this approach ...

• Model-based automatic performance testing 
framework with generative capabilities 

• Reduce manual efforts in generating a large 
number of relevant QoS configurations and 
deploying and testing applications on a cloud 
platform

Framework Architecture

Test PlanningModeling

App

Test
Spec

Test 
Case

Test 
Spec

Test DeploymentTest 
Monitoring

Test
Result

User

Test 
Env

User (App Developer) Test Automation System Cloud Infrastructure

VMGenerated 
Artifacts

Manual 
Artifacts

Test Env Generation

Test Execution

Function

Figure 1. Framework Architecture

• Automated performance testing framework 
called AUTOMATIC (AUTOmated 
Middleware Analysis and Testing In the Cloud)

• Activity Domains

• User - Modeling, Monitoring

• Test Automation System - Test Planning, Test 
Deployment

• Cloud Infrastructure - Test Emulation

Domain-Specific Modeling Language

• We developed a DSML using the Generic 
Modeling Environment (GME)

• Modeling a DDS application for emulation and 
testing its performance for various 
combinations of DDS QoS policies

Figure 2. Example Domain-Specific Model of DDS Throughput Testing Application

Test Plan Generation

• The Test Planning function 

• Traverses modeled elements in a model 
instance via a model interpreter 

• To generate executable applications and 
related test specification files

Figure 3. XML-based DDS Application Tree

Figure 4. Variable Element Combination Tree

Figure 5. Variable Element Tree

Test Deployment

• To deploy the XML-based DDS testing 
applications, specifications related to the 
deployment are generated by the model 
interpreter

• Our deployment tool 

• Deploys the XML-based DDS testing 
applications in a cloud platform

• Executes remotely the applications with a 
emulation tool called RTI Prototyper

Test Monitoring

• We employed a tool to visualize monitoring 
data of applications called RTI Monitor

• It helps users to understand DDS systems 
easily via graphical interfaces and to verity 
behaviors of entities as expected

Reference from 
http://www.rti.com/company/news/rti-monitor.html

Experience

• The experiment evaluates performance of an 
example DDS application by combining the 
RELIABLITY, HISTORY, and DEADLINE QoS 
policies

• Test Environment

• OpenStack based cloud test best employing 
KVM as a hypervisor

• Each VM type has 1 vCPU and 512 MB

• DEADLINE QoS: 1millisecond

• HISTORY QoS: KEEP_ALL

0 5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

 

 

0 5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

D
ea

dl
in

e 
M

is
se

d 
C

ou
nt

s

 

 

0 5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

Time (every 5 seconds)
 

 

Test Case 1

Test Case 2

Test Case 3

Figure 6. Deadline Miss Counts for Different Reliability QoS Settings

Conclusion

• Our work combines model-driven engineering 
(MDE) and generative programming 
techniques to provide a tool called 
AUTOMATIC

• Current artifacts in AUTOMATIC are available 
for download from www. dre.vanderbilt.edu/
~kyoungho/AUTOMATIC

References

Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne- Marie Kermarrec. 
The many faces of publish/subscribe. ACM Com- puter Survey, 35:114–131, June 2003. 

1. Joe Hoffert, Douglas Schmidt, and Aniruddha Gokhale. A QoS Policy Configuration 
Modeling Language for Publish/Subscribe Middleware Platforms. In Proceedings of 
International Conference on Distributed Event-Based Systems (DEBS), pages 140–145, 
Toronto, Canada, June 2007. 

2. D. Jayasinghe, G. Swint, S. Malkowski, J. Li, Qingyang Wang, Junhee Park, and C. Pu. 
Expertus: A Generator Approach to Automate Perfor- mance Testing in IaaS Clouds. 
In Cloud Computing (CLOUD), 2012 IEEE 5th International Conference on, pages 115–
122, 2012. 

3. Object Management Group. Data Distribution Service for Real-time Systems 
Specification, 1.2 edition, January 2007.

Kyoungho An, Takayuki Kuroda and Aniruddha Gokhale
ISIS, Vanderbilt University

{kyoungho, kuroda, gokhale}@isis.vanderbilt.edu

Sumant Tambe and Andrea Sorbini
Real-Time Innovations

{sumant, sorbini}@rti.com


