
Model-driven Generative Framework for 
Automated OMG DDS Performance Testing in the Cloud
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DDS QoS

Reference from http://www.omg.org/news/meetings/workshops/RT-2007/00-T5_Hunt-revised.pdf 
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Challenge

• It is challenging

• To predict the system’s performance in 
terms of latencies, throughput, and resource 
usage 

• Because ... 

• Diverse combinations of QoS configurations 
influence QoS of applications

Solution

• To overcome this problem

• Design-time formal methods 

• But ... lack of sufficient accuracy in 
prediction, tool support, and understanding 
of formalism 

• A promising approach 

• To emulate system behavior and gather data 
on the QoS parameters of interest by 
experimentation

• To realize this approach ...

• Model-based automatic performance testing 
framework with generative capabilities 

• Reduce manual efforts in generating a large 
number of relevant QoS configurations and 
deploying and testing applications on a cloud 
platform
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Figure 1. Framework Architecture

• Automated performance testing framework 
called AUTOMATIC (AUTOmated 
Middleware Analysis and Testing In the Cloud)

• Activity Domains

• User - Modeling, Monitoring

• Test Automation System - Test Planning, Test 
Deployment

• Cloud Infrastructure - Test Emulation

Domain-Specific Modeling Language

• We developed a DSML using the Generic 
Modeling Environment (GME)

• Modeling a DDS application for emulation and 
testing its performance for various 
combinations of DDS QoS policies

Figure 2. Example Domain-Specific Model of DDS Throughput Testing Application

Test Plan Generation

• The Test Planning function 

• Traverses modeled elements in a model 
instance via a model interpreter 

• To generate executable applications and 
related test specification files

Figure 3. XML-based DDS Application Tree

Figure 4. Variable Element Combination Tree

Figure 5. Variable Element Tree

Test Deployment

• To deploy the XML-based DDS testing 
applications, specifications related to the 
deployment are generated by the model 
interpreter

• Our deployment tool 

• Deploys the XML-based DDS testing 
applications in a cloud platform

• Executes remotely the applications with a 
emulation tool called RTI Prototyper

Test Monitoring

• We employed a tool to visualize monitoring 
data of applications called RTI Monitor

• It helps users to understand DDS systems 
easily via graphical interfaces and to verity 
behaviors of entities as expected

Reference from 
http://www.rti.com/company/news/rti-monitor.html

Experience

• The experiment evaluates performance of an 
example DDS application by combining the 
RELIABLITY, HISTORY, and DEADLINE QoS 
policies

• Test Environment

• OpenStack based cloud test best employing 
KVM as a hypervisor

• Each VM type has 1 vCPU and 512 MB

• DEADLINE QoS: 1millisecond

• HISTORY QoS: KEEP_ALL
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Figure 6. Deadline Miss Counts for Different Reliability QoS Settings

Conclusion

• Our work combines model-driven engineering 
(MDE) and generative programming 
techniques to provide a tool called 
AUTOMATIC

• Current artifacts in AUTOMATIC are available 
for download from www. dre.vanderbilt.edu/
~kyoungho/AUTOMATIC
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